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Differential geometry of phase 
transformations 

M.J. M A R C I N K O W S K I  
Engineering Materials Group, and Department of Mechanical Engineering, University of 
Maryland, College Park, Maryland 20742, USA 

The foundations have been laid with respect to a generalized theory of phase transform- 
ations in solids. In particular, the methods of differential geometry have been employed 
and such important tensor quantities as distortion, metric, torsion, and anholonomic 
object have been developed with respect to such transformations. It is further shown that 
both Riemannian as well as non-Riemannian (dislocation) geometries are needed to 
describe these transformations properly. 

1. Introduction 
When a finite volume of a crystal undergoes a 
transformation into a new phase, each phase 
becomes separated from the other by a closed 
surface or interface. A theory of such interfaces 
has already been formulated by a number of 
investigators for a special class of tran~fom~ations 
in which no diffusion of atoms is involved, i.e., the 
so-called martensitic transformations [1,2] .  How- 
ever, no generalized theory has been proposed 
which would embody all classes of transformations. 
Furthermore, since the two-phase interface is an 
entity most properly described in terms of its 
dislocation content, such a theory should in 
essence be a dislocation theory. In addition, in 
order that the treatment be all encompassing, the 
most generalized type of geometric analysis should 
be employed. It has already been shown with 
respect to grain boundaries and two-phase inter- 
faces that the techniques of differential geometry 
satisfy these conditions. This approach will there- 
fore now be used for the problem of phase trans- 
formations. 

2. Distortion tensors 
Let us consider the perfect reference crystal 
shown in Fig. la which will be denoted by an 
upper case Roman letter, i.e., K, L etc. If it now 
undergoes a phase transformation such as a simple 
shear, the lattice distortion shown in Fig. lb is 
obtained. The distorted lattice will be denoted by 
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lower case Greek letters, i.e., g, X etc. We may 
write the distortion tensor which gives (K)-+ (K) 
as follows: 

B ~ = ~  B21 B~ B2a ] = 0 1 (1) 

\ 8 '  81 0 

where the distortion tensor connects the base 
vectors in the two states according to 

eK = B ~ e K  (2) 

In the case of Fig. lb, tan 0 was taken as �89 The 
metric tensor associated with the (K) state can 
next be written as 

tan 0 ~ i /  
(tanZ0 + 1) 

0 

(3) 

On the other hand, the metric tensor associated 
with the (K) state, aKL is simply the Kronecker 
delta 8KL. The metric tensors can in turn be used 
to measure distances in the two states as follows 
[31: 

((:IS)~ = a K L d x K d x  L (4a) 

and 
(dS)~ = bKxdxKdx x (4b) 
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while 

- - ( b K x A K A i . - - a K i . ) d x K d x  L (5a) 

o r  

(dS)2K -- (dS)~z = (b, x - a K I . a  KA ~) dx~ dxX (5b) 

The distortions A~z connect the components of 
the two states as follows: 

dx K = A~dx K (6) 
whe re 

A~: - B K (7) 

With the aid of Equations 5. we can define the 
following strain tensors: 

1 K X 
E K L  = ~ ( b K x A K A L - - a K L )  (8a) 

o r  

EK x = ~(b~x_aKLA~Ax)I K I~ (8b) 

The strain EKL is obviously defined in terms of 
the (K) state coordinates, while EK x is in terms of 
the (K) state coordinates. If the coordinates are 
dragged, i.e., d x  K = d x  K then 

1, 

EKX =EKI. = eKx = �89  (9) 

If, on the other hand, the metric in state (~) is 
kept the same as that in state (K), i.e., aKx = aKL, 
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Figure 1 (a) Initial undistorted state. (b) Lattice distor- 
tion. (c) Lattice distortion followed by compensating 
lattice invariant distortion. (d) Lattice distortion 
followed by additional uncompensating lattice invariant 
distortion. (e) Lattice invadant distortion. 

then Equation 8a becomes 

, 1,  A K A  x EKL = g(a~x K L--aKL) (10a) 

while if the metric in the (K) state is kept the same 
as that in the (K) state, Equation 8b becomes 

' 1 K L E ~ x  = ~ ( b K x - - b K I . A ~ A x )  (lOb) 

In order to see how these strains all compare with 
one another, we can write, with the aid of Equation 
7 

EKL = 0 2tan20 ( l l a )  

0 

t O  n tan 0 i /  EKx = 0 0 (1 lb) 

0 

t t  i XtanO i /  e~x = nO �89 ( l l c )  

0 

It is also a simple matter to show that 
L 

E' ' ( l l d )  KL ---- E~?, = eKR 
Thus, we see that dragging of the metric gives the 



same strain as dragging of the coordinates. The 
following section will show that the former rep- 
resentation is more suitable for plastic deform- 
ation, while the latter formulation more vividly 
reflects the lattice deformation. The index L has 
been used in tile last equation to indicate that the 
strain is due to the lattice distortion or transform- 
ation associated with (K) -+ (~). 

The (K) state may next be plastically deformed 
to generate the (k) state shown in Fig. lc. This is 
accomplished by means of the following distortion: 

ti n 0!) B~ = t 0 1 (12) 

0 

This is simply a shear opposite to that given by 
Equation 1, so that the overall distortion in going 
from (K) -+ (k) is 

B E K K = 8E (13) 
= BK Bk 

Thus, the metric tensor associated with the (k) 
state is 

Ckl = BKB K = 8 k l  (14) 

We can thus write the lattice invariant or plastic 
strain in going from (K) -+ (k) as 

P 
t _ _  

ekl = ~(Ckl--bkl)----= 
~ l i a  - - I tan0 0 / 

n0 1 t a n  20 0 

0 0 

(15) 

The total strain in going from (K)+  (k) is obvi- 
ously 

T L P 
ekl = ekl + ekl = 1(--akl + Ckt) = 0 (16) 

in accordance with the construction of Fig. lc. 
The transformation strain is thus just compensated 
by the plastic strain. 

If now a plastic distortion given by 

Bf~, = B~ (17) 

is superimposed on the (K) state, we obtain the 
configuration shown in Fig. ld, i.e., the shape and 
plastic distortions add together rather than com- 
pensate one another, as was the case for the (k) 
state shown in Fig. lc. For the overall distortion, 
we can write 

o0) 
= BKBk' = n 0 1 0 

0 1 

from which we find 

(18) 

t i 2 tan0 0 /  
d k l l l  =BE1B~ = t nO (4tan20 + 1) 

0 

(19) 
while the total strain in going from (K) ~ (k I ) is  tan0 
ek11~=l(dk, ll--ak, l~)= 0 2 tan20 

0 

(20) 
The (k 2) state shown in Fig. le can be derived 
from the (K) state by means of the following 
distortion: 

BK= -- B K (21 a) 

from which it follows that 

fk~? -= b~x (21b) 
while 

P L 
ek2? = eKx (21c) 

The distortions considered thus far involved no 
volume changes, i.e., 

Det(A~) = 1 (22) 

where Det signifies determinant. Let us now con- 
sider what is perhaps the simplest of all volume 
distortions given by 

85 = v (23) 

0 

The resulting (•1) state is shown in Fig. 21 where 
V has been chosen as 4/5. The metric tensor for 
this state becomes 

0 

(24) 
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Figure 2 (a) Lattice distortion. (b) Lattice distortion 
followed by compensating lattice invariant distortion. (c) 
Lattice invariant distortion. 

whereas the strain tensor is 

e . , x '  = �89 x ' - a . ' x ' )  = � 8 9  

0 

( 2 s )  

In order to produce the plastically distorted (k 3) 
state shown in Fig. 2b from the (K 1 ) state, we must 
write 

Bfr = 1IV 

0 

(26) 

so that the overall distortion becomes 

B ~  = B~,Bfr = 6~3 (27) 

This means that the metric tensor for the (k 3) 
state is 

hk3 13 "~ ~k 313 (28)  
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Figure 3 (a) Generalized lattice distortion. (b) Lattice 
distortion accompanied by lattice invariant distortion. 

The plastic strain in going from (r 1 ) -~ (k a) is thus 

ek3 ? = �89 --gk313 ) = �89 - - V  2) 

0 

(29) 

so that the overall strain in going from (K)-+ (k 3) 
is 

T L P 
ek313 = ek313 + ek313 = 0 (30) 

I f  the distortion given by Equation 26 were applied 
to the (K) state crystal, i.e. 

BkK4 = Bfr (31) 

the (k 4) state shown in Fig. 2c would be obtained. 
The analogies between the shear distortions in 
Fig. 1 and the volume distortions in Fig. 2 are thus 
complete. 

For the sake of generality, Fig. 3 shows a set of  
more generalized distortions. If, for example, we 
write 

B5 = V (32) 

\0 0 

while 

- 



then state (K 3) can be obtained from state (K) via while 
the following distortion: 

t in 0 V (33) 

0 

On the other hand, the (k s ) state depicted in Fig. 
3b can be obtained from the (K 3) state according 
t o  l!v 0 

B~ = 1/V 

0 

We can thus write 

(34) 

Bk K = D K  DK 3 �9 -= (35) 
It follows that, whereas the (K 3) state possesses 
only a lattice distortion, state (k s) contains both a 
lattice and a plastic distortion. 

3. Torsion tensor 
Let us now consider the reference circuit 1 - 2 -  
3 - 4 - 1  associated with the (K) state in Fig. la. 
The corresponding circuit in the (~) state is shown 
in Fig. lb. Now the closure failure or Burgers 
vector associated with any Burgers circuit can be 
written as [4] 

b ~: = - -~A~zdx K (36) 

The above equation can be expanded to give 

b 1 = - - A : A x  2 - A ~ A x  2 = 4 t a n 0 - - 4 t a n 0 = 0  
4-a 2-3 (37) 

where Ax 2 etc. are the distances 4 - 1  etc. in Fig. 
la. 4-1 

Considering next the (K) -+ (k 2) state transform- 
ation, we may write 

k s K b k2 = -- A K dx (38) 

where A~: 2 must be written as 
k s k 2 A K = A ~ H ( - - x l ) + 6 K H ( + x  1) (39) 

1 

where H( - -x  1) and H ( + x  x) are Heaviside func- 
tions defined by 

01 if x 1 > 0  
H ( - -  x 1 ) = (40 a) 

if x 1 < 0  

whereas 

{~ if x:  < 0  
H(+  x ' )  = (40b) 

if 1 1 > 0  

k 2 
A K - BK~ (41) 
1 

as given by Equation 21a. The distance x 1 is 
measured from the rightmost face of  Fig. la. 
Equation 38 can now be expanded to yield 

b 1 = --A~Ax 2 -A~Ax  2 = 4 t an0  - - 0  
k s 4-1 2-3 (42a) 

The second term in the above equation is zero, 
since A~ along the path 2 - 3  is zero. In terms of 
Fig. le, Equation 42a becomes 

b 1 = 2 = Ax 2 (42b) 
k2 3 - 3 '  

The dislocations are indicated by their standard 
symbols. It is obvious that 

= --fAkK2dx k~ = 0 (43) b K 

since there are no dislocations in the (K) state. 
The line integral of  Equation 38 may next be 

converted into a surface integral by means of 
Stokes' theorem to give [5] 

bk~ = - -~Ak~dxK = --fs 

Expanding, this yields 

bl = - - s  OIAldF12= 

3[LAkK~I dF t'K (44a) 

0 ~(X I ) d x  I d.x 2 

(44b) 

where 6(x 1) is the Dirac delta function which 
satisfies the following relation 

f +~6(xa)dx 1 = 1 (45) 

and arises from the fact that 

31H(--x 1) = - -6 (x  1) (46) 

Equation 44b can thus be rewritten as 

= tan 0 (  dx 2 b2 = 4 t an0  1 

d 
(47) 

which is the same result as that given by Equation 
42a. 
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The surface integral of Equation 44a can also 
be written with respect to final state coordinates 
as follows: 

= -- j S i ~ m . k ~ d F  l'm~ (48) b k2 

�9 , k 2 
where the quantity $12 m, is termed the torsion 
tensor and is given by 

�9 . k 2 k 2 
8 1 2 m 2  A~ K = A m 2  3 [ L A K ]  (49) 

The particular component of interest to us is 

S ;  ; 1 ~" 1-Al "A 201Al  =- - �89  tanO (50) 

where the barred quantities AI etc. signify in- 
verses. Substitution of Equation 50 into 48 yields 
the same result as Equation 47. 

Turning now to Fig. 1 c, we may write 

where 

and 

b k = - - f A k d x  K (51) 

A k = A k H ( - - x l ) + S k H ( + x  1) ( 5 2 )  

1 

A~ - B~. 
1 

Equation 51 can now be expanded to give 

b 1 = - - A l z A x 2 - - A 1 A x  2 = - - 4 t a n 0 - - 0  (53a) 
k 1 4 -1 2 -3  

In terms of Fig. lc, Equation 53a becomes 

b a = - -2  = AX 2 (53b) 
k 2 '-2 

In the case of Fig. ld 

b k' = --.~A k~ dx ~ (54) 

The above relation gives the same result as that 
given by Equation 42b. 

With respect to Fig. 2, we may write 

where 

f k I •l 
b k3 = - - ~ A  K, d x  

8 Lq(+x') = & , H ( - - x  ) +  
1 

and where 
Ak~ K' -= Bk3 
1 

Substituting into Equation 55, we obtain 

(55) 

(56) 

(57) 

/ I X  
b2 = - - A ~ A x 2 - - A 2 A x 2  = [-~-.I 4 - 4  
~x 1 4 -1  2 - 3  \ V I  

(58a) 

1560 

which in terms of Fig. 2b becomes 

b 2 = 1 = Ax 2 (58b) 
KI 4--4 '  

Fig. 2b also shows the closure failure 3 ' -3  which 
is, in fact, a surface closure failure [6] and can be 
obtained by rewriting Equation 55 as 

k 3 K 1 b k3 = A~,dx (59) 

The analogue of this condition for the (k 2) state is 
shown for t h e  (k 6) state in Fig. 4a. Unlike Fig. le, 
the dislocations in Fig. 4a have surface steps 
associated with them given by 5 -5 '  and 2 ' -2 .  
These may be obtained by rewriting Equation 38 
as 

k6 ~ ~ bK A k6 dx K (60) 

where 
k 6 k 2 

AK --AK (61) 

while the corresponding closure failure associated 
with the dislocation is 3 -3 '  given by 

b k' = -- ~ AI~ 6 dx K (62) 

If now the distortion tensor given by Equation 39 
were to be rewritten as 

AKk' = A1 Kk' H ( -  x 1 ) (63) 

where 
k 7 k 2 

-- AK ( 6 4 )  
1 

o) 
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Figure 4 Torn configurations corresponding to the dis- 
located state in Fig. le .  



the configuration shown in Fig. 4b would be 
obtained. A surface closure failure 3 ' -2  is now 
seen to be present, which in turn can be resolved 
into the two components 2 ' - 2  and 3-3 ' �9  Both can 
be obtained from the following relation 

b k~ = + A ~ d x  K (65) 

The (k 7) may be visualized as being created from 
the (K 1) state by first tearing away the rightmost 

portion of this body. Equation 55 could be re- 
written as [5, 7] 

= ~ " . k a �9 . k 3 
b k a  _ _  ( S l a m 3  - -  ~'~ l a m  3 ) d E  1 3 m a  

J 

where 

and 

(66) 

�9 . k 3 h 1 g l  k 3 
S p ~  = Ap Am~3tx 'A~']  (67a) 

" " k a k 1 -  1 k 3 g2pm~ = A p A ~  3[x,A~,I (67b) 

" �9 k3 " " k~ (68a) 
S l a m 3  ---- ~ 1 3 m  3 

It follows that 

which can be used to find 

S;;1 = - - � 8 9  1) 

and 

(71a) 

S 1 2  2 : a l ;  2 = i [ - ~ ( X 1 )  -[- ~ ( x 1 ) ]  

(71b) 

When substituted into the following equation 

b k s  = -  " �9 k s �9 . k s l S m  s (S, 'm'  --~2a'm' )dF (72) 

we obtain the three closure failures shown dotted 
in Fig 3b. 

4. Two-phase considerations 
Let us now refer to the initial perfect reference 
state crystal (K 1) shown in Fig. 5a. Next, allow a 
certain region within the dotted area to undergo 
a lattice distortion given by Equation 1, followed 
by the plastic deformation given by Equation 12. 
The (K I) state crystal is thus transformed to the 
(k 8) state crystal depicted in Fig. 5b. The trans- 
formed region is obviously identical to that illus- 

and, in particular, 

$12 ~" = !A1A2OlA~2-~l~2 = l [ - -6 (x l )+~ i (x~) ] (6ab)  

When substituted into Equation 66, the above 
relations yield the same results as Equations 55 
and 59. Here we see, though, that the torsion 

�9 �9 k 3 
tensor Spin 3 measures the actual dislocation 
content, i.e., the closure failure 4 - 4 ' ,  while the 

�9 �9 k 3 
quantity f~?m 3 , termed the anholonomic object, 
measures the corresponding free surface associated 

�9 �9 k 2 with these dislocations. Obviously, ~2pm~ may 
�9 �9 k 2 be zero, as in the case of Fig. le, while S12m2 

�9 �9 k 7 remains finite. Conversely, $17m, may be zero, 
�9 , k 7 

while ~21,m~ remains finite, as is true for the 
component L2122 which yields the closure failure 
3 ' - 2 '  in Fig. 4b. States which possess an anholo- 
nomic object are said to be anholonomic or per- 
fectly torn states since they possess no elastic 
distortions [5, 7]. 

Considering now the more generalized dis- 
tortion shown in Fig. 3b, we can first write 

S s k 3  Ak~ = AkK~ H( - -x l )+  6~1H(+x 1) (69) 
1 

where 

k ' - -  k3 (70) AK3 --B~5 
1 

o) 

, L 
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: 
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2 

(K I ) STATE 

b) 
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I I '  
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,5' 

2' 2 

(k e ) S T A T E  

Figure 5 (a) Initial reference crystal in which (b) phase 
transformation takes place involving both lattice distor- 
tion followed by compensating plastic deformation. 
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trated in Fig, lc. It is apparent that if the (K 1) 
crystal were to involve only the shape change, 
giving rise to the 0c) state crystal illustrated in 
Fig. lb, then severe elastic distortions would be 
obtained. The configuration shown in Fig. 5b is 
thus of low energy. Furthermore, Burgers circuits 
taken in the (K 1) and (k 8) states lead to closure 
failures identical to those given in Figs. la and c 
respectively. 

If now the dotted area shown in Fig. 5a under- 
goes lattice distortion given by Equation 23, 
the (k 9) state configuration shown in Fig. 6a is 
obtained. This is a perfectly torn configuration 
and consists of our newly-created free surfaces, 
but no dislocations+ The perfect tearing eliminates 
the elastic strains that would otherwise be gen- 
erated. In order to obtain the surface closure 
failure 5 ' -5  in Fig. 5a we must write 

~2;; 2 = {�89 + {--�89 (73) k 9 

where the curly bracket notation is used to rep- 
resent each phase separately, i.e., 1 for the trans. 
formed region and 2 for the untransformed area. 
When extra matter is added to the (k 9) state so as 
to fill up the hole, and thus eliminate the energy 
associated with the free surfaces, the (k ~~ state 

configuration illustrated in Fig. 6a is produced. 
The new phase is obviously the same as that shown 
in Fig 2b and may be viewed as generated by the 
distortion given by Equation 26. In this case, there 
is a dislocation present given by the closure failure 
1 ' -4 ' ,  but no free surfaces. This particular closure 
failure can be obtained from the following 
component of the torsion tensor: 

Si;  2 = {--�89 + {16(xl)} 2 (74) 
k lo 

It is apparent that 

S 1 2  2 " "2 - -- f~9 lz (75) 
k l O  

Rather than have the compensating plastic dis 
tortion occur in the newly-formed phase, it may 
take place in the surrounding matrix. For example, 
Fig. 7a shows the transformation already discussed 
in Fig lb with a corresponding compensating 
plastic distortion in the surrounding matrix. Under 
these conditions, the distortion must be written as 

k 1 o k 1 o 1 ~Ak I o 
A K = {A1K / - / ( - - x  ) } 1  '1- (~XK O ( - [ - x 1 ) } 2  ( 7 6 )  

where 
k l O  

AK = A~: (77a) 

v) 
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Figure 6 (a) Phase change which involves lattice distor- Figure 7 Lattice distortion followed by compensating 
tion, followed by (b) compensating plastic deformation, plastic distortion in surrounding matrix: 
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while 

A~ '~ = A~ (77b) 

The lattice distortion associated with the trans- 
formation in Fig. 6a can also be accommodated by 
a plastic distortion which involves the removal of  a 
horizontal plane on each side of  the new phase. 
This results in the formation of  the (k ~1) state 
illustrated in Fig. 7b. Except f6t a relatively small 
residual elastic strain, the closure failure is essen- 
tially the same as that given for the (k ~~ state of  
Fig. 6b. 

All of  the discussion up to now can be recast in 
a new light by reference to Fig. 8. In particular, 
the circle in Fig. 88 corresponds to the un- 
deformed (K) state which, upon deformation to 
state (K), takes the form of an ellipse. Similarly, the 
ellipse in Fig. 8b corresponds to the distorted state 
(k 3) which is generated from the ( ~ ' )  state in Fig. 
2. The compensating plastic distortion may be 
viewed as that which returns the ellipse back into 
the circle. More generally, the ellipse may be 
generated from the circle either by a lattice or a 
plastic distortion. Conversely, the circle may be 
generated from the ellipse either by a lattice or a 

o) 

b) 

plastic distortion. If  the distortion involves the 
lattice, the coordinates are dragged, whereas if it 
is plastic, the metric tensor is dragged. 

We are now in a position to write a generalized 
distortion tensor associated with a phase trans- 
formation. In particular, 

A k = {AkH(- -xK)} I  + {AkKH(+ xK)}2 (78) 
2 

where x K is measured from the two-phase inter- 
face taken as the origin, while AkK and A ~  corre- 
spond to the distortions giving rise to 2 the new 
phase and the surrounding matrix respectively. In 
view of  these considerations, it is apparent that  the 
theory of  the martensite transformation [1] is, in 
fact, a theory in which A~  in the above equation 

is 6k  while A k involves only non-diffusional dis- 

tortions. This latter restriction means that volume 
changes involving dragging of the metric tensor, 
such as occurs in the (n 1) _~ (k 3) transformation, 
are not allowed. Furthermore, the present formu- 
lation is basically a dislocation theory, in contrast 
to previous treatments [1, 2] .  

The dislocation density associated with a two- 
phase interface m a y b e  written as [8] 

= _  m 8 �9 " k  8 ( 7 9 )  t2nSk 8 ~nSl 8 S18m8 

where e ns 1~ m8 is the permutation tensor defined 
by 

nSlSm 8 - 6 n s l s m 8  = e /~/g (80) 

and where e n818m8 are the permutation symbols 
while g is the determinant of  the metric tensor 
gk s 18. Since, for the (k 8) state, 

S~; 1 = �89 tan 0~(X 1 ) (81) 
k 8 

it follows that 

a 31 = 6(x 1) tan 0 (82a) 
k s 

which in terms of  Fig. 5b may be written as 

A x  1 

2 ' - 1 '  OL 31 
ks - Ax 2 (82b) 

5 - 5 '  

For the (k 1~ state Equations 79 and 74 yield 

Figure 8 Alternative m e t h o d  of  depicting lattice and 
plastic dis tor t ions shown in (a) Figs. la ,  b, c and (b) Figs. 
2a, b. 

a32 ={ 1 
k,~ F 

+ { -  8(x')}. (83a) 

1563 



which in terms of Fig. 6b is, 

Ax 2 

I_@V V 1 ' -  4' O/32 = ~ ( X  1 )  ~--- ( � 8 8  1 )  ~-- ~ X  2 
k l  o 

1-1 '  

(83b) 

A free surface density tensor can also be written 
as 

O(.r19 k 9 9 19 m 9 - �9 k 9 -= 6 n a19m9 (84) 

With the aid of Equation 73 this yields 

a32 = ~32 (85) 
k 9 k l  0 

The foundations are thus laid for a complete 
geometrical theory of phase transformations in 
solids. 

5. Summary and conclusions 
The methods of differential geometry have been 
applied to the analysis of phase transformations 
in solids. In particular such tensor quantities as 
distortion, metric, strain, torsion, dislocation 
density, Burgers vector, and anholonomic object 
have been developed for such transformations. It is 
further shown that the interfaces separating the 
transformed and untransformed regions can be 

described in terms of a well-defined dislocation 
array. The present theory applies to all types of 
transformations and connects the classical, i.e., 
Reimannian geometries, with the dislocation, 
i.e., non-Reimannian geometries. 
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